ULTRASONIC SWITCH

Ashok Mehra

ere is a low cost, wireless switch controller. It uses ultrasonic sound waves for remote control of switch.

As with any other remote control, the system basically comprises a mini transmitter and a receiver circuit. Sound of frequency up to 20KHz is audible to human beings. Frequencies above 20 KHz are inaudible. The transmitter circuit generates ultrasonic sound of frequency between 40-50 KHz. The receiver senses the ultrasonic sound generated from the transmitter and switches on a relay.

Fig. 1 shows the block diagram of the ultrasonic switch. The transmitter uses a 555 based astable multivibrator. It oscillates at a frequency of 40-50 KHz. An ultrasonic transmitter transducer is used here to transmit ultrasonic sound effectively. The transmitter runs on a 9V battery. The ultrasonic receiver circuit uses an ultrasonic receiver transducer to sense ultrasonic signals. It uses a two-stage amplifier, a rectifier stage, and an operational amplifier in inverting mode. Output of operational amplifier is connected to a relay through a complimentary relay driver stage. A 9V adapter can be used to power receiver circuit. When switch \$1 of transmitter is pressed, it generates ultrasonic sound. Ultrasonic receiver transducer receives the sound and converts it to electrical variations of the same frequency. Transistors Q3 and Q4 amplify these signals. The amplified signals are then rectified and filtered. The filtered DC voltage is given to inverting pin of operational amplifier IC2. The non-inverting pin of IC2 is connected to a variable DC voltage through VR2 which determines the

threshold value of ultrasonic signal received by the receiver for operation of relay RL1. The inverted output of IC2 is used to bias transistor Q5. When

ated can be varied by adjusting VR1. Adjust it for maximum performance. Ultrasonic sounds are highly directional. So when you are operating the

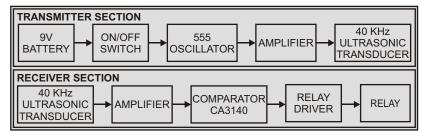


Fig. 1: Block Diagram of Transmitter & Receiver

transistor Q5 conducts, it supplies base bias to transistor Q6. When transistor Q6 conducts, it energises the relay RL1. The relay can be used to control any electrical or electronic equipment.

Frequency of ultrasonic sound gener-

switch the ultrasonic transmitter transducer of transmitter should be placed towards ultrasonic receiver transducer of receiver circuit for proper functioning. The receiver is always kept in switched on position.

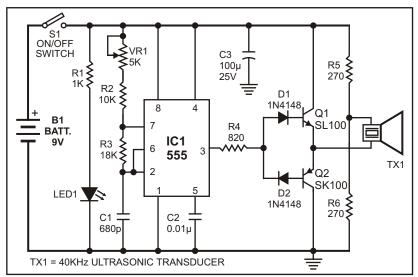


Fig. 2: Circuit Diagram of Transmitter.

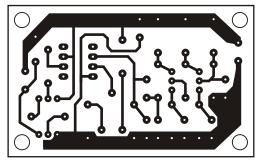


Fig. 4: Actual - size, solder-side PCB layout of Receiver.

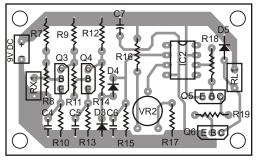


Fig. 5: Component layout for the PCB of Receiver.

SEMICONDUCTORS				CAPACITORS		
	IC1	NE555 Ti	mer	C1		680p
	IC2	CA3140		C2		0.01u
	Q1,Q6	SL100		C3,C7		100u, 25V
	Q2	SK100		C4		0.22u
	Q3,Q4	BC548		C5		0.1u
	Q5	BC558		C6		0.56u
	D1-D4	1N4148				0.000
	D5	1N4007		MISCELLANEOUS		
	LED1	Red LED		B1	9V Battery	,
				S1	On/Off Sv	
	RESISTORS			TX1	40KHz Ult	
	R1, R19		1K			r transducer
	R2,R11,R14,R16,R17		10K	RX1		trasonic Receiver
	R3		18K		transducer	
	R4		820	RL1		Relay
	R5,R6		270	11.21	, ,, 100	ricitay
	R7		390K			
	R8		470K			
	R9,R13		15K			
	R10		12K			
	R12		4.7K			
	R15		100K			
	R18		27			
	VR1,VR2		5K			
1						

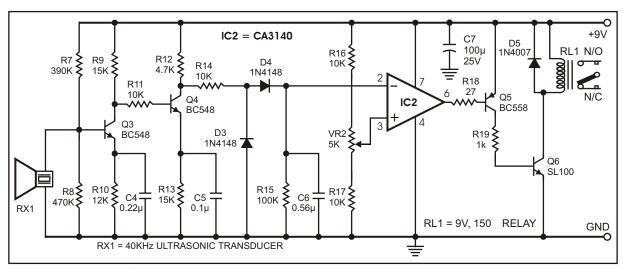


Fig. 3: Circuit Diagram of Receiver.

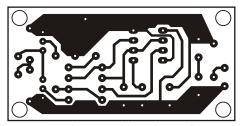


Fig. 6: Actual - size, solder-side PCB layout of Transmitter.

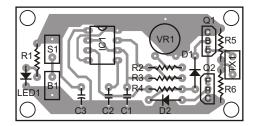


Fig. 7: Component layout for the PCB of Transmitter.